Category Archives: EWH

FreePulse: Testing In Nepal

Editorial note: this post is post-dated to December 28th. Poor internet connectivity prevented me from posting this until now!

FreePulse is a low-cost patient monitor designed for use in resource-constrained hospitals. I’ve been developing this monitor for about three years now, and I’ve been working closely with Access Health Care to design our first on-the-ground test in Nepal. I’m very excited to see where we’ll go and the lessons we’ll learn!

What We’ve Done So Far

The GoFundMe for FreePulse received a humbling and overwhelming response this summer, raising $1000 more than the projected goal. This generosity allowed me to push forward prototyping the fully functional model of FreePulse, which led to steady improvements in the design as well as a steady increase in the amount of wires sprawled out across my desk.

Messy Wires

There were four major areas of improvement that version 1 of FreePulse entailed, so I’ll give a quick overview of the work that was done over the latter part of 2016. Each of these topics could be a blog post in their own right, and I aim to expand on them in more detail in the future.

Improvements to the Software

The software of FreePulse was completely revamped during the summer to use a new modular, sandbox-like approach to displaying graphical elements like signal traces and buttons. You can check out much of the progress on that front in this PR (and on that note, you can always be up-to-date on the latest software progress by checking out the FreePulse GitHub page!). More work is still to be done here, but these modifications have laid the groundwork for expanding FreePulse’s capabilities to display many different kinds of modules and signals.

Addition of Pulse Oximetery

Using a sophisticated and efficient analog front-end chip from TI, a low-cost and hardware-efficient pulse oximeter module was added to FreePulse. This module accepts a standard DB-9 port probe, meaning it is compatible with a wide array of existing pulse oximeter clips.

Pulse Ox

The software algorithms for calculating percent oxygen content are all available on the GitHub page. These algorithms were determined empirically by testing against gold-standard reference pulse oximeters and fine-tuning calibration parameters.

Addition of Semi-Automatic Blood Pressure Measurement

Using a standard connection hose that will fit virtually any existing blood pressure cuff, the non-invasive blood pressure (NIBP) unit was built to provide simple blood pressure measurements at minimal cost and complexity. I added a DC control valve and pressure sensor to control the release and detection of pressure fluctuations in the cuff, and the extraction of pulse rate and blood pressure were performed in software. What this means for the user is that in order to take someone’s blood pressure, you simply have to hit “Start” and pump the cuff up to 200 mmHg with a hand pump. After the cuff is inflated, the deflation and pressure detection is completely automated, making it a very hands-off procedure.

NIBP System

Development of a Printed Circuit Board

After spending so much time with this mess of wires on my desk, it was time to translate that into a clean printed circuit board (PCB) that would be used in the prototype devices. Working with Mrs. Barbara Burcham, an incredibly talented (and patient!) PCB layout professional, we designed and revised a circuit board that saved as much space as possible while retaining full hardware functionality. I’m thrilled with the result, and the biggest testament to Mrs. Burcham’s talent is that the fully assembled board was able to be programmed on the first print! That doesn’t happen very often.

PCB Flashable

Preparing for the First Hospital Test

While improving the technical aspects of FreePulse, I also began working with contacts in Nepal to organize on-the-ground tests of FreePulse’s capabilities. Two organizations played critical roles in supporting this effort: Access Health Care and Innolitics, LLC. In addition to this, an incredibly generous donation from Yujan and Mekha Shrestha was the final gift that covered the rest of the budget for the proposed test trip. With the support of these donors, the testing and evaluation was set for this coming winter.

In preparation for this opportunity, a copious amount of background research and testing was performed to ensure safety compliance and hospital readiness. I began reaching out to doctors in Nepal and gauging community interest in the project, and eventually I determined what hospitals would be optimal fits for FreePulse’s first on-the-ground test. After determining the hospitals, the full weight of effort became preparing a prototype that would be functional both in its operation as well as its form factor. I needed a PCB, and I needed a case!

PCB Flashable

PCB Flashable

For the former, I used the PCB design that Mrs. Burcham and I were developing and fabricated it using OshPark, a community-driven PCB manufacturing site. I then modeled a case for the monitor in Solidworks and fabricated it using an ABS 3D printer. Although the schedule was tight, two functional FreePulse prototypes are now on the ground in Nepal!

What We’re Up To Now

Videographer and media guru Madeleine Dunaway and I are on the ground beginning our visitation of the three hospitals from which we will be testing FreePulse: Amppipal Hospital, Okhaldhunga Community Hospital, and the Annapurna Neurological Institute. Our goal is to demonstrate FreePulse’s efficacy and receive user feedback from doctors and nurses that will guide the development of the next iteration of FreePulse. We are thrilled at the opportunity to work with the doctors and nurses at these hospitals! We hope to build relationships that will help us to better understand what needs are experienced by medical professionals in the developing world and how we can design better medical equipment to satisfy those needs.

I will be blogging about our experience here and sharing the lessons we are learning, as well as sharing some footage of FreePulse in action in the field. Stay tuned here or at my blog to get the latest updates as we begin our adventure in Nepal!

Open Road Nepal

How Our Team Helped Roosevelt Hospital Achieve a 79x Value for Money in Guatemala — and More!

As described extensively on this blog, working in a developing country hospital is not always easy.

In effect, it always results in a great sensation of success, when one suddenly finds a hidden stash of valuable – yes – cables. Exactly that happened when our group found the ECG’s cables and power supplies shown in the pictures below.

In a storage room at the emergency department of the hospital we found 7 vital signs monitors, 7 Power supplies, 2 pulse-oximeters and 3 ECG cables in woking condition. Unfortunately, all remaining cables for the seven machines were broken, an example of which (an SPO2 sensor/pulse-oximeter) is shown here.

From all the parts we had an fixed we managed partially assemble 5 working Vital Signs Monitors: Two of them were put back in to service with pulse-oximetry and ECG working, 3 of them with ECG only. Unfortunately the department didn’t have any compatible blood pressure cuffs, so we would have to buy new ones, just as we wouls need additional pulseoximeters and ECG cables.

Vital signs monitors are fairly simple pieces of medical equipment, however the cheapest completely refurbished set found on eBay that is corresponding to these machines is $3.503.

Thus having these pieces in working condition would have an extremely high value to Roosevelt Hospital. Meanwhile the cheapest prices on eBay for replacement parts, that we need to put all of these vital signs monitors back into service, are found for $24 (SPO2) + $54.50 (ECG) + $12.5 (Blood pressure cuffs).

In “How to repair shielding on ECG cables and leads”  I described how we we repaired three sets of cables. The fixes were good, but not perfect in that we did make the cables work, but the signal was still somewhat noisy, for which reason the machines couldn’t have been used in surgery and detailed diagnosetics – rather they were useful for general “simple” monitoring.

Considereing the fixed cables as being in working condition (a somewhat noisy signal is, after all, better than no signal at all), we now just needed 2 ECG cables, 5 SPO2 censors and 7 blood pressure cuffs to make all of these machines work.

The total cost of this according to the prices on eBay would be just $321, although with used parts.

Considering that a completely new refurbished set on eBay costs 3.503, the value of these equipments reach $24521 in order to buy seven of these machines.

By repairing these machines our team achieved 79x value for money (even though the fix wasn’t perfect).

Now, I thought this story would end here, when, out of the blue, I received an email from Mr. Juan Fernández at Spacelabs Healthcare in Latin America,  who wrote that they would be able to send the broken parts to us —  free of charge! We could now make all the machines work perfectly (with no noise on the line). My collegue in Guatemala, biomedical engineer and expert technician Mr. Joe Leier will receive and bring this donation to Roosevelt Hospital as soon as possible.

I want to thank the people, that have been a part of saving these machines: my collegues Ms. Rebecca Avena and Mr. Joe Leir and Mr. Juan Fernandez at Spacelabs. We at EWH and Roosevelt hospital we are extremely thankful for this donation, which now means that Roosevelt hospital has 7 fully refurbished, high quality patient monitors working in their emergency department.

Guatemala: Vital Signs Monitors and Dialysis Machines

Guatemala log #2

During our first day at the hospital we’ve been working on two projects:

The Vital signs monitors. 

The emergency department of Roosevelt hospital has received seven vital signs monitors as donations. They suspect the machines should be working fine, however the cables for measuring oxygen saturation, ECG and oxygen saturation are broken. Unfortunately we cannot test these machines as the power supplies are missing.

Furthermore only managed to collect one set of cables in condition good enough for them to be reapaired and unfortunately buying new ones would cost hundreds of dollars per machine.

For now the strategy will be to get a DC power supply for the machine as quickly as possible (18 V, 2,7A) and then we will try to get just one machine up and running.

The 13-17 dialysis machines

I have seen thirteen machines with my own eyes, some say however that the hospital has 17 Dexter 1550 type dyalisis machines. We started out trouble shooting two of the machines that looked as if they were in a proper condition.

The machines are quite old old but some of them are in a surprisingly good condition. Currently the haemodialysis department is renting machines from an external company, which is expensive, so it is our hope that we can help the hospital by getting their own machines working and thereby save some expenses.

Chancy with one of the dialysis machine.
Shanyce and Mohammed with one of the dialysis machine.

Unfortunately we are currently in doubt whether or not the consumable products are necessary to use the machine are available.

For now however, we are still testing the machine!

Stay tuned for the coming updates for the continuation of these projects and the initiation on the baby-bottle project!

In Antigua Guatemala There’s a Volcano at the end of the Street!

Antigua, Guatemala: Site of the Engineering World Health Winter Institute in 2015. The coming two weeks 15 engineering students from around the world are going to put broken medical equipment back into service to aid the Guatemalan health care system.

Getting to Guatemala was probably the longest flight of my life. The trip started in Copenhagen at 3:30, went through Amsterdam and Atlanta to finally reach Guatemala Airport at 8:30 in the evening. Once I arrived in Guatemala I had been on the way for 24 hours exactly.

Antigua is like a small and very romantic town. It could have in Spain apart from the fact that’s it’s surrounded by volcanos(!) Very cool. Have a look at the Gallery! It gives a quite nice impression of small and romantic Antigua.

 

Paediatric Size Blood Pressure Cuffs and Pulse Oximeters

Paediatric Blood Pressure Cuffs and Pulse Oximeters, KCMC, Moshii, Tanzania
Sister Petrolina, Head of the Paediatric Department at the KCMC with paediatric size blood pressure cuffs and clip-on pulse oximeters.

Shortly before we left the KCMC this August, we found out that it was not rare for hospitals to be lacking various equipment in paediatric size. In consequence it would not be possible to measure the oxygen saturation and blood pressure of children. In some cases lack of paediatric size tubes made it impossible to intubate children in need of a ventilator to assist their breathing.

Most of these products could probably be made pretty easily with a bit of creativity. This should give ideas for some design projects for most biomedical/design engineers.

We had a small budget for our various projects from the EWH and we decided to spend what we had left to buy blood pressure cuffs in paediatric size and clip-on pulse oximeters for the paediatric department at KCMC.

What’s it Like to Work in a Developing Country Hospital?

It is now a little more than a week ago that I returned from and unforgettable journey to Africa. It’s been such a journey that expands horizons, gives new perspectives, creates new visions and changes beliefs and values. During my stay I worked for a month at local hospitals, an experience that was different in so many ways from what I had expected.

Prior to our placements at local hospitals the students of the 2014 EWH summer institute (myself included) took part in a month-long educational course on “Engineering in the Developing World” and an introductory Swahili course – a program which proved to be of considerable advantage as we were soon to develop a trusting relationship with the departments we would come to work for.
After this first month of education I was moved to my placement along with my group, which besides myself consisted of a student from Duke and one from Harvard. We were to work in two hospitals: Kilimanjaro Christianity Medical Centre (KCMC) and Mawenzi Hospital, both situated in the town of Moshi, Kilimanjaro region.
The KCMC is one of the largest and most prestigious institutions in Tanzania and has a biomedical engineering department consisting of 30 engineers and technicians. Despite good will and hard work from the department, it was obvious that we could do much in both hospitals, just as we could learn a lot from them. Our group alone repaired more than 60 pieces of equipment during our stay. Overall, this year’s EWH summer program returned 4,200 pieces of equipment amounting to 8.6 milion according to the latest figures from EWH.
If I was to draw one conclusion about medical equipment in developing countries today, I would say that it simply should not be allowed to donate without informing properly about that specific piece of equipment in the local language (or in English, at the least):
In so many places we found rooms and whole warehouses filled with piles of medical devices. To our surprise, very often these devices could be put back into service by simple mechanical repairs. We even found completely new operating theatres that could not be used because they were packed full of unused equipment. I was left behind wondering if donations do any good at all – or if they do more harm than good. During our month at the hospital we slowly started to learn the reasons why these equipments weren’t in use: How were people supposed know how to use a piece equipment, if they had no manual for it? Or how could they use a machine, if the user interface was in Dutch or in German? When a repair was to be done after all, many reported difficulties and bureaucratic systems when having to acquire replacement parts, such as a lightbulb for a microscope.
The type of problem that could arise when departments were not provided information about new technologies became clear to me one day at the KCMC, when our group was asked to repair an Infant Warmer from GE. We were told the following: The department had received a completely new machine and put it into a small room where they normally observed newborns in the early hours after a birth. But when the staff began to use it, the machine heated the room up to a temperature so high, that it was unbearable to stay in there.
The solution turned out to be immensely simple: the skin-temperature sensor had mistakenly been placed under the bedside, and had to be moved to the skin of the newborn – otherwise the device would constantly work to achieve a temperature of 35.5 degrees under the bed instead of on the baby’s skin. Thus the machine was heating on and on (and on…).
After having cleared out this first misunderstanding, we explained that the machine could not, as some thought, be used to take X-rays images, but that it merely contained a tray for a detector plate so that you weren’t forced to move the baby around unnecessarily,  and that the machine could not calculate an APGAR-score, but that it contains a stopwatch simply to help you with the task. The problem wasn’t lack of education or ability to understand how a machine works. It was simply the fact that people were not provided the necessary information. Even if some information was provided, it was not done properly: How is a nurse going to read a 500 page manual, while working in a ward full of women in labour? Seeing this and other similar cases, one of our main focuses became developing quick start guides in order to provide departments with a fast and simple way of knowing how to use a device.
Another typical issue that we encountered was how departments virtually never took advantage of vital signs monitors and ECG’s because they had run out of the necessary electrically conductive gel. There are a number of alternatives to conductive gel – in principle anything that contains electrolytes, for example aloe vera or ketchup, can be used. It should have been obvious however (as I did not first think of), that most doctors and patients do not want to use these methods, as they are uncomfortable and inconvenient. I remember explaining to a doctor how he could make his own electrically conductive gel using water, flour and salt. His response: “Is that really recommended?”. Imagine his reaction, had I recommended him to use ketchup. In addition, many Africans are proud people to whom one can and should not just offer anything (just as one would probably not do anyone at home). Therefore, developing a gel that is more likely to be used clinically, and in addition could be produced cheaply using local materials, would be an example of a simple and small, but valuable project for developing world hospitals (while you can find alternatives to conductive gels, I still haven’t seen one that actually looks like the gel that is used in clinics). Notably the KCMC already had the means to produce their own ultrasound gel (which is acoustically and not electrically conductive) so they shouldn’t be too far away from being able to produce their own conductive gel too.
This and many other projects are still to be carried out to make the daily life at a these hospitals run smoothly. Here I have given just two examples of what it can be like to work in the developing world. So many ways remain in which one can help this  parallel world of ours, in which resources are so scarce that we are constantly forced to think in new and innovative ways to provide the best possible health care for the all people.

Fixes in Moshi, KCMC and Mawenzi

ewhdtu:

The last couple of weeks have been stuffed with interesting fixes and great experiences in Moshi, KCMC and Mawenzi, Here are some of my favourite photos.

Educating, teaching and building parts

Some pictures from a great day in Moshi: We fixed an infant warmer, taught nurses how to use the manual suction pump and made new parts for infant incubator with assistance from the orthopedics/prothsis department.

1: KJ is teaching a nurse at the female medical ward how to use the manual suction pump – which was suprisingly challenging, not just for the locals, but also for us (had to read the manual…)

2: Samson from the orthopaedic department at KCMC is preparing a new piece for an infant incubator that we have been working on.

3: The KCMC has a whole department for creating prothesis – the department is actually a Danida donation from the 70, where approx. 70 danes came to Moshi to do development work.

4: We were (here KJ) teaching one nurse from each department of Mawenzi how to use the manual suctionpumpt. The main points are to put water around the lid to close it tightly and fold the tube for vacuum.

5: Nurse is bringing back the suction pump to the department – now working – this pump is useful whenever there’s a powercut or when the electrical ones breake (which happens quite often..)

6: This guy spent approx. 1.5 hrs showing me around Moshi as we were lookig for a diode that we needed to fix an infant incubator. People in Moshi are reallyreallyreally helpful

Moshi Means Smoke and Its Dirty and Feels Like Home

IMG_4063
The first week at KCMC we were introduced to the steem system of the entire hospital. This is KJ next to an underground water-conainter and -pump. The engineering department first wanted us to find out what it would cost the hospital to change the entire oil-powered system to an electrical one. We had to explan that our scope was related more to medical equipment
IMG_4070
It may not seem so but this was part of our introduction to the hospital water-systems. The water tanks were placed on the very top and the view from there was pretty great. Its not visible here, but for a few short moments the kilimanjaro peak was actually visible.
IMG_4091
Idara ya Waguu (=Department of feet/legs) – the orhtopaedic department of KCMC has a whole department and school for prosthetics – was actually funded by danida in the 70’s – still one of the most well funtioning departments of the hospital equipment-wise.
IMG_4103
I fixed this incubator..
IMG_4109
… and was very pleased with myself.
IMG_4112
The other day we were looking for some parts in town, amongst other a screw for a stethoscope. We were testing if the stethoscope worked on the street and a group of Masaai people passed us and wanted to try. The face of a Masaai hearing his heartbeat for the first time is amazing faces were priceless.
IMG_4119
There’s seven eleven in Moshi … They’re open 24/7 and sell Chipsy mayaii (fries w. eggs) kuku(chicken), ng’ombe(cow), mbuzi(goat) and really great ginger ale and bitter lemons.
IMG_4126
How to fix a broken stethoscope using a piece of suction tubing, stethoscope tubing and epoxy.
IMG_4127
Every friday afternoon there’s an aerobics class and Mawezi hospital arranged by the physiotherapy department. Unfortunately few people show up… we did abs.
IMG_4137
The view from our office/workshop at Mawenzi hospital. Sometimes Kili is visible. But its rare.
IMG_4145
Saturday night karaoke. We sang beyonce/halo and Backstreet boys/I want it that way.
IMG_4151
Sunset on the way home from work. The Kili is behind me.
IMG_4152
mboga = vegetables matunda = fruit. fikra = genius