Tag Archives: engineering

Mount Meru Hospital, Tanzania

Each Friday for the next three weeks, the Tanzania EWH team will  work at Mount Meru Hospital just outside the heart of Arusha.

The Tanzanian health care system consists of larger referral/consultant hospitals such as Kilimanjaro Christian Medical Center, regional referral centers covering several districts, and smaller hospitals covering one district each such as Karatu Hospital.

Mount Meru is a regional hospital with departments for obstetrics and gynecology, pediatrics, surgery, out-patients, and units for ophthalmology and dentistry. The hospital also has a laboratory and an intensive care unit. The hospital typically sees 500 patients per day on an outpatient basis and admits approximately 250-290 patients every day.

Generally there is a fee to be seen by a doctor at Mount Meru; however, as a public hospital, they are obliged to serve all people, and will provide free health care to those who cannot afford  it.

The typical population served by the hospital consists of farmers, pastoralists or industry workers. These are families that earn a low to middle-class income. Some of those who work in the outskirts of the districts covered by Mount Meru Hospital (for example people coming from Ngorongoro or Longido district) have nine hours travelling time to the hospital. Others simply can’t afford the cost of transportation. As a result, acute patients, especially pregnant women and children, often reach the hospital too late for doctors to do anything.

According to hospital staff, the largest barriers to provide health care services in Tanzania are lack of capacity to handle all, but especially acute patients, lack of funding and lack of accessibility to medicines, supplies and health care technologies. These issues are more or less apparent in all across governmental Tanzanian hospitals from the district level up to referral/consultant levels. Handling acute cases is a particularly large problem at district hospitals, which is why regional hospitals like Mount Meru experience a very high occupancy rate and a high number of patients, that do not reach the hospital in time for an ideal outcome of their treatment.

At Mount Meru Hospital, one challenge in meeting the demand is the large amount of donated equipment of which only about half is currently functioning. The entire region has just one biomedical engineering technician (BMET), Mr. Sharif Rajabu Kishakali. As of early 2015, he is the first ever BMET at Mt. Meru Hospital. He is currently working on a preventative maintenance program for the hospital’s equipment. The attached pictures are a collection from the projects he is currently working on.

How Broken Medical Equipment Ends Up in the Worlds Poorest Hospitals

Global Medical Aid (GMA), an aid organization from the Capitol Region of Denmark, was given broken medical equipment and therefore forced to spend their resources separating life-saving medical equipment from useless machines. Unfortunately, not all organisations perform this vital quality control: many donations end up as nothing more than piles of junk at the world’s poorest hospitals.

Medical equipment is extremely valuable and has the potential to significantly improve health care in developing countries. In an effort to aid the world’s poorest health care systems, western hospitals often donate used medical equipment when updating their inventory.

Unfortunately, donations often don’t have the intended positive impact. An example of how donations can end up causing more harm than good was featured on the main Danish news channel DR1:

Aid Organization was Given Broken Medical Equipment: We are Being Used as Landfill

The news story was on national Danish television and radio.

It is described how regional politicians of the Capitol Region of Denmark did not set aside resources for testing of equipment donations before the machines were given to Global Medical Aid (GMA). GMA had to spend a large amount of financial and human resources on separating useful pieces from broken ones —  resources that should have been spent on the transportation of equipment to developing countries. (See translation of the full story at the end of this post).

Not all aid organisations pay third parties to test the quality of their donations as GMA does. Many aid organizations simply ship malfunctioning equipment directly to developing countries without any quality assurance whatsoever.

An example of this is illustrated in the pictures below from Roosevelt Hospital in Guatemala City, taken on the the 30th of December 2014. I am currently working at the hospital with Engineering World Health as part of a six person team of students and professionals from Rochester Institute of Technology, George Mason University, Marquette University and the Technical University of Denmark. We are based at Roosevelt Hospital in Guatemala City with the aim of placing broken donated equipment back into service.

Broken equipment in the equipment "junk yard" #2
How donations can end up once they reach the target hospital: Broken equipment in the equipment “junk yard” and Hospital Roosevelt in Guatemala City. This photo was taken on the 30th of December 2014.

Already during our first day at the hospital we found vital medical equipment out of use: 14 haemodyalisis machines, 7 vital signs monitors, 4 anaesthesia machines and an incubator. The well-meaning donations are left as junk in the “equipment graveyard” in the back of the hospital.

Another example of failure to target donations properly is shown in the following picture from the same hospital, featuring the pictured dental chair, which is still partly contained in the original wrapping, indicating that the chair has most probably never been used.

This dental chair was donated to Roosevelt Hospital in Guatemala and as seen on the picture, it has never been used: Part of the original wrapping is still on there.
This dental chair was donated to Roosevelt National Hospital in Guatemala and as seen on the picture, it has never been used: Part of the original wrapping is still on the chair.

Unfortunately, the problem we are facing at Roosevelt Hospital is not unique. It is seen in developing countries around the world. Leslie Calman, CEO at Engineering World Health, summarises the issue as follows:

“The donation of medical equipment is a generous and well-meaning outpouring of aid, intended to strengthen health care systems, reduce human suffering and extend life-saving remedies to millions. But if not done with care and attendtion to local conditions — including the capacity of local hospitals to install and maintain the equipment —  the generosity may not live up to its donors’ good intentions. The Secretary General of the United Nations has stated that as much as 70% of essential medical equipment is not functioning in the developing world.  Coupled with equipment donations should be an investment in training a local workforce to maintain and service the equipment. This would create local jobs, build skills, improve the environment, and create the conditions in which healthcare can be safely delivered.”

The magnitude of harm caused by faulty equipment donations goes largely unnoticed. To illustrate this, consider the following: According to World Bank, the Danish health care expenditure in 2012 was 11.2% of Danish GDP, accumulating to $6,304 per capita (the corresponding number in the United States is 17.9%). This means that $6304 is spent on health care for every single one of Denmark’s 5.6 million citizens.

$34.65 billion is spent on health care in Denmark every year. Contrary to popular belief, this money is not spent on the high salaries of doctors. Based on the average yearly physician’s salary in Denmark of $85,000 and nurse’s salary set at $54,000, only 18% of the Danish health care expenditure is spent on salaries. The major part of the remaining $28.14 billion is spent on hospital infrastructure and the extremely valuable medical equipment.

My point is not that poor hospitals don’t need equipment donations. Rather, the important aspect to realise is that the donation of advanced technologies is extremely complicated.  Resource-poor health care systems are in need of expertise from professionals who understand advanced health care technologies and the logistical complexity behind donations.

The fact that a vast amount of broken equipment is sent off to fill up the words poorest hospitals without ever being used is ethically irresponsible and indefensible. It is essential that local health care workers, departments, and hospitals ensure that well-meaing donations actually end up fulfilling their life-saving purpose.

Translation of the original story: 

Danish hospitals donate used medical equipment to alleviate poor countries. However, aid organisation warns that the equipment may be dangerous to use.
In a corner of Global Medical Aid's storage halls in Birkerød you'll find more than 30 infusion pumps. They are donated from hospitals in the Capitol Region and should have been sent to poor countries in Africa, but as it turns out, this equipment is completely defective.
The relief organisation Global Medical Aid sends hospital equipment to poor countries around the world. They are now accusing the Capitol Region for using them as a landfill. 
The reason is that the organisation has been given an abundance of used medical equipment that does not work at all. Everything from anaesthesia machines to infusion pumps and defibrillators have turned out to be broken.
"We have obviously been treated as if we were a landfill site, where hospitals could get rid of the equipment they have been storing in basements for years" says Hans Frederik Dydensborg, the president of Global Medical Aid (GMA).The politicians of the region have now decided that medical equipment is to be donated in an ethically responsible way. According to GMA, it is directly unethical when hospitals donate equipment that doesn't work. GMA has incurred large expenses in separating working pieces from broken ones -- money that should have been spent on bringing the equipment to the world’s poorest countries."We have had large amounts of unnecessary expenses, with the consequence being that we haven't been able to send off the containers as expected" says Hans Frederik Dydensborg.In the Capitol Region, the chairman of the IT and debureaucratisation committee, who is responsible for recycling medical equipment, is concerned about the fact some donations have proven to be useless."Of course the equipment must have a certain standard, and of course it to be in a condition such that it can be used" says Lise Müller (Socialist People's Party).To avoid faulty donations in the future, the Capitol Region is now creating a storage hall in order to collect used equipment from hospitals and check it up for errors and deficiencies before they are sent on to aid organisations.In the region of Mid-Jutland, they have good experiences with a corresponding scheme."I am sure that we can find people who could find use of the equipment. If they don't, we will have to throw it out. But of course we have to learn from this, that the equipment we donate is of the right quality" says Lise Müller. The new storage halls will cost about DKK 2 million (USD 330.000) a year to maintain and the money will be found in the 2016 budget of the capitol region.

How to Repair Broken Shielding on ECG Cables

The work done by engineers in a developing country includes a range of smart repairs that help hospitals save significant expenses.

Equipment cables are common examples of broken parts found in developing countries. Just a week ago I described how our group found seven vital signs monitors out of use at Roosevelt National Hospital in Guatemala. This last week, our group found the cables for the monitors, however the shielding on them was broken. The picture on the left shows the cable with broken shielding, while the picture on the right depicts the noisy — and clinically useless — ECG signal.

Buying one new ECG   cable for a patient monitor would cost $51 if purchased on eBay.  However, it is feasible to fix the ECG cables and avoid the cost of purchasing new parts.  In order to do this, we performed three simple steps:

1) Wrap foil carefully around the ECG cables.

2)  Ensure that the foil is electrically connected to the ends of the original ECG cable shielding.

3)  Wrap the foil tightly in electrical tape

The photo on the right shows the resulting ECG signal. The ‘p-q-r-s-t” sequence of a normal ECG signal can be seen on the screen.

The result is still not optimal, as there is residual noise interfering with the signal. Our group is currently investigating ways to make the shielding more effective so that the foil is optimally electrically connected along the entire length of the cables.

The EWH Guatemala Winter Institute 2014/15 Roosevelt Group considering the resulting signal and if it can be further improved.
The EWH Guatemala Winter Institute 2014/15 Roosevelt Group considering the resulting signal and if it can be further improved. Left: Caty Lin – George Mason University, Middle behind: Shanyce Stewart, Rochester Institute of Technology, Middle in front: Becca Avena – Marquette University and Co-op at GE Healthcare, Right: Mohammad Ali – George Mason University.

 

Guatemala: Vital Signs Monitors and Dialysis Machines

Guatemala log #2

During our first day at the hospital we’ve been working on two projects:

The Vital signs monitors. 

The emergency department of Roosevelt hospital has received seven vital signs monitors as donations. They suspect the machines should be working fine, however the cables for measuring oxygen saturation, ECG and oxygen saturation are broken. Unfortunately we cannot test these machines as the power supplies are missing.

Furthermore only managed to collect one set of cables in condition good enough for them to be reapaired and unfortunately buying new ones would cost hundreds of dollars per machine.

For now the strategy will be to get a DC power supply for the machine as quickly as possible (18 V, 2,7A) and then we will try to get just one machine up and running.

The 13-17 dialysis machines

I have seen thirteen machines with my own eyes, some say however that the hospital has 17 Dexter 1550 type dyalisis machines. We started out trouble shooting two of the machines that looked as if they were in a proper condition.

The machines are quite old old but some of them are in a surprisingly good condition. Currently the haemodialysis department is renting machines from an external company, which is expensive, so it is our hope that we can help the hospital by getting their own machines working and thereby save some expenses.

Chancy with one of the dialysis machine.
Shanyce and Mohammed with one of the dialysis machine.

Unfortunately we are currently in doubt whether or not the consumable products are necessary to use the machine are available.

For now however, we are still testing the machine!

Stay tuned for the coming updates for the continuation of these projects and the initiation on the baby-bottle project!

In Antigua Guatemala There’s a Volcano at the end of the Street!

Antigua, Guatemala: Site of the Engineering World Health Winter Institute in 2015. The coming two weeks 15 engineering students from around the world are going to put broken medical equipment back into service to aid the Guatemalan health care system.

Getting to Guatemala was probably the longest flight of my life. The trip started in Copenhagen at 3:30, went through Amsterdam and Atlanta to finally reach Guatemala Airport at 8:30 in the evening. Once I arrived in Guatemala I had been on the way for 24 hours exactly.

Antigua is like a small and very romantic town. It could have in Spain apart from the fact that’s it’s surrounded by volcanos(!) Very cool. Have a look at the Gallery! It gives a quite nice impression of small and romantic Antigua.

 

AHCN in Rukum #4 – Getting there and Team Profiles

As some of you may have read, the current AHCN effort in Nepal is comprised of three phases:  1) documenting the health care needs of rural Nepal, 2) conducting rigorous in-field medical, biomedical engineering and public health research 3) providing sustainable solutions for rural health care services and financing hereof in regions of interest.

Of these, our project in Rukum makes up the first phase. In the following days we will post about from our work in Rukum. This first post is a collection of photos of getting from Kathmandu to Rukum. This took three days as we had several stops on the way: the first day we visited Chitwan Medical College Teaching Hospital and agreed to collaborate in this project and in the future. The second day we visited the Nepal Youth Foundation nutrition centre in Dang and that night we would arrive in Musikot/Jumlikhalanga, the administrative centre of Rukum.

Before we start writing about our actual work, we wish to present out team. Hereby short profiles on each member of the in-field team that conducted phase one of our project:
Dr. Justin Jung Malla, M.B.B.S, Licensed Doctor: N.M.C no. 11941. Position at AHCN: Founder and Field Clinical Expert.
Experience:

  • Emergency Dept. Besi Sahar Hospital, Lamjung, Nepal (6 months)
  • Emergency Dept. Chitwan Medical College Teaching Hospital, Chitwan Nepal (6 months)
  • Emergency Dept. Norvic International Hospital Nepal (14 months)

Dr. Saujan Shrestha (M.B.B.S),  Licensed Doctor: N.M.C-no.12162. Position at AHCN: Field Clinical Expert.

Experience:

  • Chitwan Medical College Teaching Hospital, Emergency Department , Chitwan, Nepal (6 months)
  • Neuro Cardio Multi-speciality Hospital, Biratnagar, Nepal (6 months)
  • Emergency dept. and General medicine dept., Biratnagar Hospital Pvt. Ltd. Biratnagar, Nepal (14 months)

Mr. Rajkumar Silwal, MBA graduate from University of West London with great enthusiasm to support and improve health care in rural Nepal. Good management skills with a combination of leadership, communication, strategic planning and effective decision-making attributes. Experienced semi-professional photographer.
Position at AHCN: Director of Finance and Administration. Photographer. 

Mr. David Kovacs, B.Sc of Biomedical Engineering from the Technical University of Denmark and University of Copenhagen. Position at AHCN: Founder and President. 

Experience:

  • President of Engineering World Health at the Technical University of Denmark (10 months)
  • DUKE-EWH Summer Institute in Tanzania 2014 participant (2 months)
  • Volunteer at Chitwan Medical College Teaching Hospital (4 months)
  • Research Assistant at Rigshospitalet, Copenhagen University Hospital (12 months)
  • Accepted as On the Ground Assistant at EWH Gutatemala Winter Institute 2014/2015 (to be 1 month)

The following gallery is a collection of pictures of our team on our way to Rukum.

What’s it Like to Work in a Developing Country Hospital?

It is now a little more than a week ago that I returned from and unforgettable journey to Africa. It’s been such a journey that expands horizons, gives new perspectives, creates new visions and changes beliefs and values. During my stay I worked for a month at local hospitals, an experience that was different in so many ways from what I had expected.

Prior to our placements at local hospitals the students of the 2014 EWH summer institute (myself included) took part in a month-long educational course on “Engineering in the Developing World” and an introductory Swahili course – a program which proved to be of considerable advantage as we were soon to develop a trusting relationship with the departments we would come to work for.
After this first month of education I was moved to my placement along with my group, which besides myself consisted of a student from Duke and one from Harvard. We were to work in two hospitals: Kilimanjaro Christianity Medical Centre (KCMC) and Mawenzi Hospital, both situated in the town of Moshi, Kilimanjaro region.
The KCMC is one of the largest and most prestigious institutions in Tanzania and has a biomedical engineering department consisting of 30 engineers and technicians. Despite good will and hard work from the department, it was obvious that we could do much in both hospitals, just as we could learn a lot from them. Our group alone repaired more than 60 pieces of equipment during our stay. Overall, this year’s EWH summer program returned 4,200 pieces of equipment amounting to 8.6 milion according to the latest figures from EWH.
If I was to draw one conclusion about medical equipment in developing countries today, I would say that it simply should not be allowed to donate without informing properly about that specific piece of equipment in the local language (or in English, at the least):
In so many places we found rooms and whole warehouses filled with piles of medical devices. To our surprise, very often these devices could be put back into service by simple mechanical repairs. We even found completely new operating theatres that could not be used because they were packed full of unused equipment. I was left behind wondering if donations do any good at all – or if they do more harm than good. During our month at the hospital we slowly started to learn the reasons why these equipments weren’t in use: How were people supposed know how to use a piece equipment, if they had no manual for it? Or how could they use a machine, if the user interface was in Dutch or in German? When a repair was to be done after all, many reported difficulties and bureaucratic systems when having to acquire replacement parts, such as a lightbulb for a microscope.
The type of problem that could arise when departments were not provided information about new technologies became clear to me one day at the KCMC, when our group was asked to repair an Infant Warmer from GE. We were told the following: The department had received a completely new machine and put it into a small room where they normally observed newborns in the early hours after a birth. But when the staff began to use it, the machine heated the room up to a temperature so high, that it was unbearable to stay in there.
The solution turned out to be immensely simple: the skin-temperature sensor had mistakenly been placed under the bedside, and had to be moved to the skin of the newborn – otherwise the device would constantly work to achieve a temperature of 35.5 degrees under the bed instead of on the baby’s skin. Thus the machine was heating on and on (and on…).
After having cleared out this first misunderstanding, we explained that the machine could not, as some thought, be used to take X-rays images, but that it merely contained a tray for a detector plate so that you weren’t forced to move the baby around unnecessarily,  and that the machine could not calculate an APGAR-score, but that it contains a stopwatch simply to help you with the task. The problem wasn’t lack of education or ability to understand how a machine works. It was simply the fact that people were not provided the necessary information. Even if some information was provided, it was not done properly: How is a nurse going to read a 500 page manual, while working in a ward full of women in labour? Seeing this and other similar cases, one of our main focuses became developing quick start guides in order to provide departments with a fast and simple way of knowing how to use a device.
Another typical issue that we encountered was how departments virtually never took advantage of vital signs monitors and ECG’s because they had run out of the necessary electrically conductive gel. There are a number of alternatives to conductive gel – in principle anything that contains electrolytes, for example aloe vera or ketchup, can be used. It should have been obvious however (as I did not first think of), that most doctors and patients do not want to use these methods, as they are uncomfortable and inconvenient. I remember explaining to a doctor how he could make his own electrically conductive gel using water, flour and salt. His response: “Is that really recommended?”. Imagine his reaction, had I recommended him to use ketchup. In addition, many Africans are proud people to whom one can and should not just offer anything (just as one would probably not do anyone at home). Therefore, developing a gel that is more likely to be used clinically, and in addition could be produced cheaply using local materials, would be an example of a simple and small, but valuable project for developing world hospitals (while you can find alternatives to conductive gels, I still haven’t seen one that actually looks like the gel that is used in clinics). Notably the KCMC already had the means to produce their own ultrasound gel (which is acoustically and not electrically conductive) so they shouldn’t be too far away from being able to produce their own conductive gel too.
This and many other projects are still to be carried out to make the daily life at a these hospitals run smoothly. Here I have given just two examples of what it can be like to work in the developing world. So many ways remain in which one can help this  parallel world of ours, in which resources are so scarce that we are constantly forced to think in new and innovative ways to provide the best possible health care for the all people.

Fixes in Moshi, KCMC and Mawenzi

ewhdtu:

The last couple of weeks have been stuffed with interesting fixes and great experiences in Moshi, KCMC and Mawenzi, Here are some of my favourite photos.

Charging batteries

Goodmorning-battery charge for a paediatric pulse-oximeter:

9 volts / 250 ohm resistor , charging with approximately 40-50 miliamps, yielding charging rate of about 1/20.

Educating, teaching and building parts

Some pictures from a great day in Moshi: We fixed an infant warmer, taught nurses how to use the manual suction pump and made new parts for infant incubator with assistance from the orthopedics/prothsis department.

1: KJ is teaching a nurse at the female medical ward how to use the manual suction pump – which was suprisingly challenging, not just for the locals, but also for us (had to read the manual…)

2: Samson from the orthopaedic department at KCMC is preparing a new piece for an infant incubator that we have been working on.

3: The KCMC has a whole department for creating prothesis – the department is actually a Danida donation from the 70, where approx. 70 danes came to Moshi to do development work.

4: We were (here KJ) teaching one nurse from each department of Mawenzi how to use the manual suctionpumpt. The main points are to put water around the lid to close it tightly and fold the tube for vacuum.

5: Nurse is bringing back the suction pump to the department – now working – this pump is useful whenever there’s a powercut or when the electrical ones breake (which happens quite often..)

6: This guy spent approx. 1.5 hrs showing me around Moshi as we were lookig for a diode that we needed to fix an infant incubator. People in Moshi are reallyreallyreally helpful